# Exercises on Randomized Complexity <br> CSCI 6114 Fall 2021 

Joshua A. Grochow

October 28, 2021

Recall that we have a language $L$ is in...

|  | BPP | RP | coRP |
| :---: | :---: | :---: | :---: |
| $x \in L \Rightarrow$ | $\operatorname{Pr}[A(x)$ accepts $] \geq 2 / 3$ | $\operatorname{Pr}[A(x)$ accepts $] \geq 2 / 3$ | $\operatorname{Pr}[A(x)$ accepts $]=1$ |
| $x \notin L \Rightarrow$ | $\operatorname{Pr}[A(x)$ accepts $] \leq 1 / 3$ | $\operatorname{Pr}[A(x)$ accepts $]=0$ | $\operatorname{Pr}[A(x)$ accepts $] \leq 1 / 3$ |

Last time we saw that Polynomial Identity Testing is in coRP.

1. Show that $P^{B P P}=B P P$, and then show that $B P P^{B P P}=B P P$.
2. Show that coBPP $=\mathrm{BPP}$.
3. Give an alternative characterization of BPP similar to the verifier definition of NP. Here, instead of a "witness", think of the Verifier $V(x, r)$ as taking in the input $x$ and a random string $r$.
4. Show that $\mathrm{RP} \subseteq$ NP. Show that $N P \subseteq B P P$ iff $N P=R P$. Hint: BPP and RP are both closed under $\leq_{m}^{p}$, so NP is contained in one of these classes iff SAT is.
We can now update our table above to:

| $\operatorname{Pr}(A(x)$ accepts $)$ | BPP | RP | coRP | NP | coNP | PP |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x \in L \Rightarrow$ | $\geq 2 / 3$ | $\geq 2 / 3$ | $=1$ | $>0$ | $=0$ | $>1 / 2$ |
| $x \notin L \Rightarrow$ | $\leq 1 / 3$ | $=0$ | $\leq 1 / 3$ | $=0$ | $>0$ | $\leq 1 / 2$ |

5. (a) Let $L \in$ BPP. Let $L^{\prime}$ be the poly $(n)$-concatenation of $L$, that is, a tuple $\left(x_{1}, \ldots, x_{n}\right) \in L^{\prime}$ iff all $x_{i} \in L$. Show that $L^{\prime} \in \mathrm{BPP}$.
(b) Show that $N P^{B P P}=N P^{B P P[1]}$ where the latter means the oracle is queried only once. Hint: Use nondeterminism to guess the oracle answers, and use the one query at the end to verify the guesses.
(c) Show that $N P^{B P P} \subseteq B P P^{N P}$.
(d) Use the preceding to show that if NP $\subseteq$ BPP then $\mathrm{PH} \subseteq B P P$. (We'll see next week that $\mathrm{BPP} \subseteq \Sigma_{2} \mathrm{P} \cap \Pi_{2} \mathrm{P}$, so in fact the latter implies that PH collapses.)

## Resources

- TODO

