Exercises on Randomized Complexity CSCI 6114 Fall 2021

Joshua A. Grochow

October 28, 2021

Recall that we have a language L is in...

	BPP	RP	coRP
$x \in L \Rightarrow$	$Pr[A(x) \text{ accepts}] \ge 2/3$	$Pr[A(x) \text{ accepts}] \ge 2/3$	Pr[A(x) accepts] = 1
$x \notin L \Rightarrow$	$Pr[A(x) \text{ accepts}] \le 1/3$	Pr[A(x) accepts] = 0	$Pr[A(x) \text{ accepts}] \le 1/3$

Last time we saw that POLYNOMIAL IDENTITY TESTING is in coRP.

- 1. Show that $P^{BPP} = BPP$, and then show that $BPP^{BPP} = BPP$.
- 2. Show that coBPP = BPP.
- 3. Give an alternative characterization of BPP similar to the verifier definition of NP. Here, instead of a "witness", think of the Verifier V(x, r) as taking in the input x and a random string r.
- 4. Show that $\mathsf{RP} \subseteq \mathsf{NP}$. Show that $\mathsf{NP} \subseteq \mathsf{BPP}$ iff $\mathsf{NP} = \mathsf{RP}$. *Hint:* BPP and RP are both closed under \leq_m^p , so NP is contained in one of these classes iff SAT is.

We can now update our table above to:

Pr(A(x) accepts)	BPP	RP	coRP	NP	coNP	PP
$\begin{array}{c} x \in L \Rightarrow \\ x \notin L \Rightarrow \end{array}$	$\geq 2/3$	$\geq 2/3$	= 1	> 0	= 0	> 1/2
$x \notin L \Rightarrow$	$ \leq 1/3$	= 0	$\leq 1/3$	= 0	> 0	$\leq 1/2$

- 5. (a) Let $L \in \mathsf{BPP}$. Let L' be the poly(n)-concatenation of L, that is, a tuple $(x_1, \ldots, x_n) \in L'$ iff all $x_i \in L$. Show that $L' \in \mathsf{BPP}$.
 - (b) Show that $NP^{BPP} = NP^{BPP[1]}$ where the latter means the oracle is queried only once. *Hint:* Use nondeterminism to guess the oracle answers, and use the one query at the end to verify the guesses.
 - (c) Show that $\mathsf{NP}^{\mathsf{BPP}} \subseteq \mathsf{BPP}^{\mathsf{NP}}$.
 - (d) Use the preceding to show that if $NP \subseteq BPP$ then $PH \subseteq BPP$. (We'll see next week that $BPP \subseteq \Sigma_2 P \cap \Pi_2 P$, so in fact the latter implies that PH collapses.)

Resources

• TODO